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Abstract.

We study the flow-field generated in a one-dimensional walldged gas layer due to periodic small-amplitude time
variation in the temperature of its boundaries. We focushenNavier-Stokes limit, where the layer width is large corepga
to the mean free path and the characteristic time-scalenopdeature variations is long compared with the mean free
time between collisions. The viscous-compressible NaStekes equations with slip-flow boundary conditions areesb
analytically for the case of sinusoidal heating. The analys then extended to study the system response to arbitrary
periodic heating. Results are presented for both trianghel square-wave heating profiles. These solutions are ftund
be in good agreement with low-variance Monte-Carlo sinoifest of the Boltzmann equation, validating the presentyaisl
as an accurate and simple alternative to expensive mofemiagputations. In addition, the analysis is applied forrgitative
examination of the conditions for breakdown of the slip-fid@scription in non-isothermal flows.
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INTRODUCTION

The time response of a fluid confined in a channel and subjeath@nge in the thermal properties of its boundaries has
been studied extensively in the context of both classical fluechanics [1] and rarefied gas dynamics [2]. The fluid
motion induced in this problem is essentially driven by thechmnism of thermal expansion, coupling temperature
variations in the fluid with density gradients. The probleihgi@adual change in wall thermal properties was studied in
the context of continuum gas dynamics in a series of papees[@ and papers cited therein) in which a time-scale
longer than some modest multiple of the molecular colligiore has been assumed. To consider shorter time-scales,
several researchers have investigated the problem inrfiedf sudden temperature variations by examining the
kinetic response of a dilute gas to a step function changalhtemperatures [4-7].

Current interest in the unsteady boundary heating probdemoitivated by the common occurrence of time-varying
boundary temperatures in a wide scope of micro- and nararelenechanical-system applications, ranging from
micro-processor chip heating to ultrafast thermal exictaencountered in the laser industry [8, 9]. Previous works
have focused on the gas response to instantaneous [7] aiutlyra@rying continuous [10] changes in the wall
temperatures with characteristic time-scales on the avfjesr smaller than, the mean collision time. Under these
conditions, the effect of molecular collisions is smalldancollisionless description is appropriate. Utilizinglka
description, closed-form solutions were obtained for tie@gump and high-frequency oscillatory heating problems
In the latter case, the hydrodynamic response was found tmined to thin bounded layers in the vicinity of the
walls at all times.

In this work we complement the above studies by focusing emptbblem in the collision-dominated limit; namely,
we consider the case where the distance between the wadlgyiss ¢ompared with the mean free path and the time-
scale of temperature variations is large compared with tearmtime between molecular collisions. We study the
late-time response of the system to periodic changes irethpearature of its boundaries. The gas behavior in these
cases is modeled by the compressible Navier-Stokes eqsatidject to slip-flow boundary conditions. To first-order
in the Knudsen number, the latter reduce to impermeabitibddions for the normal component of the flow velocity
and temperature jump conditions at the boundaries. This@amonly-used model which has been applied to the
study of various problems [11-13]. The inclusion of slipaflboundary conditions makes the results presented here
applicable to devices with characteristic scales as small Jum at standard atmospheric conditions. We make use



of the present analysis to examine the breakdown of theflshipdescription with decreasing time- and length-scales
through comparison with low-variance Monte Carlo simwasi of the Boltzmann equation [14, 15] and existing
analyses of the counterpart high-frequency collisionpeeslem [10].

The paper is organized as follows: first, the linearized fgnokis formulated. Then an analytical solution is derived
and the numerical method used for validation is outlinedr @sults for sinusoidal and general periodic heating
profiles are presented and discussed. Finally, some canglueimarks are given.

PROBLEM FORMULATION

Consider a perfect monatomic gas layer of mean demgityonfined between two infinitely long, accommodating
walls in the (y*,Z*) plane atx* = £L/2, where* denotes a dimensional variable. The walls are heated umijor
with prescribed periodic time dependence and their comrampérature i, (t*) = To[1+ eF(t*)]. HereF (t*) =
F(t"+ 1), wheret; = 271/ wy is the time period andy; is the angular frequency of the temperature variation. It is
assumed that the amplitudeof the oscillatory term is smalk(« 1) so that the system description may be linearized
about its equilibrium state of uniform densjhy and temperatur&. In contrast with previous studies [7, 10], we focus
here on the case where the distahdeetween the walls is large compared with the molecular mesngath (i.e.,

the Knudsen numbéfn =1 /L < 1) and the characteristic time-scale of the temperatuiiati@ns at the boundaries
is large compared with the mean time between collisions.

We model the system evolution using the viscous-compriessiwier-Stokes equations subject to slip-flow bound-
ary conditions at the boundaries [12]. We assume a one-diimeal setup where all variables aiedependent and the
velocity vectoru* has a non-zero component only in tkiedirection. To render the problem dimensionless, we scale
the position by the layer width and the time by a time-scaté = w 1. The velocity is scaled bgo, L and the density
and temperature are normalized fxyyand Ty, respectively. Linearizing about the initial equilibrisstate, we obtain
the following balances of mass, momentum and energy fo©ilee densityp, normal velocityu and temperaturé
perturbations
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In Eq. (1), S = wjL/+/RTo is the Strouhal number (with gas constd®)t Kn = po/(po/RToL) is the modified
(viscosity-based) Knudsen number (wjth the gas dynamic viscosity at reference-equilibrium coodg); y is the
ratio of specific heats; ariér is the Prandtl number. For a perfect monatomic gas5/3. We consider here a BGK
(Bhatnagar, Gross and Krook [16]) model of molecular intgaam for whichPr = 1 and efficient low-variance Monte
Carlo solution methods exist [15]. In the present notataur,assumption that the characteristic tim;e*l is much

longer than the mean time between collisiaflg, = |/./8RTo/ 1, can be expressed &Kn <« /8/m~ 1.6. We
comment further on the validity of this condition in the Aysis and Results sections.

The boundary conditions (2) impose impermeability and gpdlse magnitude of temperature jump at the walls.
The latter is determined by the value of the temperatureignact the walls and a temperature-jump coefficient,
& = {Kn, with { taking the valu€ = 1.3,/m1/2 for the BGK model [17]. The modified Knudsen numKAérappearing
in (1) is related tdKn through I
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wherepp/(poy/RTol) = 1/ 1/8 for a BGK gas [17].



ANALYSIS

Sinusoidal heating

The problem specified by Egs. (1)-(2) is amenable to analysiclution for the case of sinusoidal heatifdt) =
sin(t). Towards this end, we seek for the long-time periodic (nathan the initial transient) behaviour of the system.
We assume harmonic time-dependence of the hydrodynantigpations

G(xt) =G(x)e", Ge {p,u,T} @)
and substitute (4) into (1). The density and velocity pdrations can be eliminated using
_ . 5Kn (1 4Kn\s, 1/.~ 5i)\=
_ i _ - o mn__ = _ !
p=iu,u= 2Pr82<8t+ 3 )T St<2Kn 28)T (5)
to yield a single equation for the temperature
5Kn (1 4iKn\z,, 1 (.~ 5Kn 5i\z .=
3PrS2 (St+ 3 )T +3SI 4Kn+ S T"—iT =0. (6)

The solution of (6) satisfying the boundary conditions &yiven by
T(x) = AcosHrix) + Bcoshrx) (7)

where the constanss B, r; andr; are tabulated in Ref. [18]. The expressions for the densitiw&locity perturbations
follow subsequently from (5). In addition, the normal hélaik is given by Fourier’s law, which in non-dimensional
representation (after scaling ppy(RTy)%/?) takes the forng(x) = —(5I/<vn/2Pr)T’. The physical fields are obtained by
taking the imaginary parts of the pertinent expressions.

General periodic heating

The above solution can be extended to obtain the gas restmasdgitrary small-amplitude periodic heating. This
can be achieved by representing the system behavior asa Baperposition of single-harmonic responses, with
varying amplitudes determined from the Fourier expansfda(b).

We demonstrate this procedure by studying the gas resporbe ttriangle wave" (tw) and “square-wave" (sw)
heating signals. These profiles can be represented by thirdF series expansions

2t/ , 0<t<m/2 P (_1)(n71)/2
Rw(t+2mk) = —2t/m+2 , m/2<t<3m/2 = Z —————sin(nt) (8)
2t/m—4 , 3m/2<t<2m T n=13s.. n
and 4 L
1, o<t<m _4 < 1_
Fsw(t + 211K) = {_1 L on<t<on = D nsm(nt) , (9)

wherek = 0,4+1,+2,.... Using linear superposition, the system response is noairdd as an infinite sum over the
corresponding responses to each of the sum componentsandgp). The solution for each component depends on
the Strouhal number based on the corresponding frequemapaeent,St(n) = nwilL/+/RTo. Sincen can become

arbitrarily large, it is inevitable that the slip-flow regamequirementX(n)Kn < /1/8, will not be satisfied for
sufficiently largen. In practice, however, only a finite humber of terms is neefted converged result, owing to
the decaying contribution of the high-frequency termsl(/n? in the triangle-wave and- 1/n in the square-wave
distributions). More specifically, our numerical calcigats indicate that onlid =~ 10 andN ~ 100 terms are required

for obtaining a converged result in the triangle- and squeaee cases, respectively. These considerations lead to
a bound on the dimensional frequen@j which, for a givenKn, satisfies the conditiot(N)Kn < /71/8. This
limitation becomes particularly important, as shown in.Fgat short times after wall-temperature discontinujties
where high-frequency components are non-negligible.
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FIGURE 1. (a) Schematic partition of th&n, &) plane to the different flow domains in the sinusoidal heapiraplem. The dark-

shaded and bright-shaded zones mark the domains of slipfidveollisionless-flow regimes, respectively. The Bi€n= ,/8/m
corresponds to the locus of states where the characteitatescaler = 1/ wyp is equal to the mean collision tingy. The limit

casest < Kn <« 1 (of small dynamical compressibility) al®Kn > /8/m, S > 1 (of thin bounded layers) are discussed in Refs.
[18] and [10]. The crosses, circles and triangles mark(81g<n) combinations for which LVDSMC data is presented in Fig. 1b.

(b) The Knudsen-number variation of the walls heat-flux dmgeé, || = max{q(x= £0.5)}, at the indicated values & /(1/2)
for a BGK gas subject to sinusoidal heating. The lines magkathalytical slip-flow and collisionless solutions and tiimbols
denote LVDSMC data.

NUMERICAL SIMULATIONS

Slip-flow theory can be rigorously derived from asymptoti@alysis of the Boltzmann equation. In this section we
briefly describe the method used for obtaining numericalittmis of the Boltzmann equation for validating the
present analysis. Since Boltzmann equation solutionsali@ for all Kn and, they will allow us to find the limits
of applicability of our results.

The prevalent numerical scheme for solving the Boltzmanra#gn is a stochastic particle method known as the
direct simulation Monte Carlo (DSMC) method [19]. Howevance typical flow-velocities in the present problem
are small compared to the speed of sound, use of the DSMC nheiitto existing computational resources becomes
extremely time consuming. Our numerical solutions areefoee obtained using a recently developed variance-
reduced particle method akin to DSMC known as low-varianeeational simulation Monte Carlo (LVDSMC),
which, by simulating only theleviation from equilibrium, achieves significant variance reductienabling accurate
simulation of weak-signal flows with reasonable computetloesources.

In the following, the BGK model is simulated using a partaruLVDSMC method developed by Radtke and
Hadjiconstantinou [15] for treating the linearized Bol@nm equation in the relaxation-time approximation. In casit
with the DSMC method, the low Knudsen numbers considereel th@not pose particular problems for the LVDSMC
method, as the latter simulates the deviation from a spatrakiable equilibrium and is able to take advantage of
the near-local-equilibrium conditions prevalent at Ign. The simulations usBl.g; = 200 cells forKn = 0.025 and
Neai = 100 cells for all other values &n. The time-step used was a small fraction (typically 0.2hef ¢ell traversal
time based on the most probable speéN.q| /2RTo). The results shown were sampled after allowing the sinorati
to achieve a “steady" oscillatory state by integratinginetifor at least 20 acoustic time-scale’s,/2RTp.

RESULTS

The slip-flow analysis of the system response to sinusoektihg has been validated in Ref. [18] through comparison
with LVDSMC results. For completeness, we describe herdittties of applicability of our theory. Figure 1 presents
schematic mapping of the different flow regimes obtainedéendinusoidal heating problem in t(ién, &) plane. In
Fig. 1a, The dark-shaded and bright-shaded zones mark thaids of slip-flow and free-molecular regimes, respec-
tively, while the unshaded zone corresponds to the tramsigime domain of “intermediate” Knudsen numbers. Fig.
1b presents thKn-variation of the walls heat-flux amplitude at the indicatatlies ofS.

When& < 1, the characteristic time-scale of temperature variatairthe boundaries is always considerably larger
than the mean collision time. As a result, the limit of valydif the slip-flow theory is determined only by the Knudsen
number. Our comparison with LVDSMC simulations (cf. Fig.drd [18]) confirms the commonly accepted value of
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FIGURE 2. The (a) velocity and (b) temperature perturbations for a B@i§ subject to triangle-wave heating profile at
Kn=0.025,% = n\/§/4 ~ 1.11 and the indicated values of time. The solid lines corredgo the Fourier-series results and the

crosses mark LVDSMC data. The circles denote the wall-teatpee perturbations, added to mark the magnitude of testyner
jumps at the walls.

FIGURE 3. The velocity perturbation for a BGK gas subject to squargeeating profile akn = 0.025,% = my/2/4~ 1.11
and the indicated values of time. The solid lines corresgoride Fourier-series results and the crosses mark LVDSM& da

Kn = 0.1 to be the upper limit of applicability of the slip-flow mod&he transition regime then extends upgio~ 7,
where the effect of molecular collisions vanishes and the-fnolecular description, analyzed in Ref. [10], prevails

The situation changes markedly in the case of high-frequbrating,S > 1. Here, the short time-scale of tem-
perature variations at the walls becomes the main factoet@rchining the type of flow to be developed; specifically,
the SKn criterion replaces the Knudsen number condition used irBthe 1 case. AtSKn = /8/ 7 (denoted by a
line in Fig. 1a) the characteristic time-scale= 1/w, and the mean collision timey are equal; the slip-flow and
collisionless flow regimes are expected to take placgkh < /8/mandSKn>> /8/m, respectively. In practice,
our comparison with LVDSMC data indicate that the transitiegime is bounded betweer20< SKn < 20.

The analysis of the system response to the triangle-wavan@)square-wave (9) signals is examined in Figures
2 and 3, respectively, where the velocity and temperatuldsfizre compared with LVDSMC results. The indicated
Strouhal number in both case® & 1v/2/4) corresponds to the “fundamental’= 1 frequency of the wave. In the
triangle-wave case (Fig. 2), the agreement between themréseory and LVDSMC data is very good at all times,
apart from thin Knudsen layers observed in the temperatafdgatt = 27r.

A less satisfactory agreement is obtained in the squarewase (Fig. 3), where large discrepancies appear in the
velocity profile shortly after the wall-temperature distinnity occurs (att = 1T the wall-temperature perturbation
“jumps" from 1 to—1). To rationalize these discrepancies, recall that theutl number is inversely proportional to
the characteristic time-scale of the temperature vanatat the walls. When wall-temperature discontinuitiesuocc
this local time-scale becomes vanishingly small, makirggdbrresponding Strouhal number infinitely large. In terms
of the present Fourier analysis, infinitely large frequenoynponents are required to capture the correct system
behaviour. The conditio®Kn < /71/8 is therefore violated and the full kinetic model of the gasstrbe taken
into account. As can be seen in Fig. 3a, this breakdown oflifrdlsw description persists for some (short) time after
the discontinuity occurs. This indicates that even wherr@gmating the system behavior using a truncated Fourier



series, a number of high-frequency terms (which are stilknegligible) violate the time-scale restriction. Spexifiy,
for the present case characterizeddy: 1.11 andKn = 0.025, we find tha& (N = 100)Kn=: 5.6 > /711/8, which is
manifested in the disagreement between the two velocitfigsatt = 11r7/10 (Fig. 3a). With increasing time (from
the discontinuity at = rrto the one at = 2r), the discrepancies in the velocity vanish (Fig. 3b). Simitends are
also observed in all other hydrodynamic fields (not showrher

CONCLUSION

We have studied the linearized response of a gas confined iora-ghannel to periodic variation in the temperature
of its boundaries. The results obtained, valid for Knudsamiperskn < 0.1 and Strouhal number® < Kn™1,
complement existing analyses of the collisionless gasorespto high-frequencyy > 1) heating. In addition, the
present scheme provides an accurate and simple descrgdtitve gas response in the lod&-number limit where
numerical calculations are particularly demanding, duertg evolution time-scales and small hydrodynamic respons
amplitudes. Extensions of the present results to non-gierteeating profiles as well as other models of molecular
interaction are presented in a separate paper [18].

ACKNOWLEDGMENTS

The authors are greatly indebted to Prof. Nicolas Hadjiaoxtgou for his continuous help during this work. G.A.
Radtke acknowledges the support of the Singapore-MITraléa

REFERENCES

H. SchlichtingBoundary Layer Theory (McGraw-Hill, 1960).

G.N. Pattersorintroduction to the Kinetic Theory of Gas Flows (University of Toronto Press, 1971).

J.F. Clarke, D.R. Kassoy and N. Riley, “Shock waves gdadra a confined gas due to rapid heat addition at the boundary

Strong shock waves", Proc. R. Soc. LoAd393, 331-351 (1984).

Y. Sone, “Effect of sudden change of wall temperature iafiad gas", J. Phys. Soc. Jagih 222-229 (1965).

L. Lees, “Kinetic theory description of rarefied gas flod/"Soc. Ind. Appl. Mathl3, 278-311 (1965).

D.C. Wadsworth, D.A. Erwin and E.P. Muntz, “Transient roptof a confined rarefied gas due to wall heating or cooling”, J

Fluid Mech.248, 219-235 (1993).

7. A. Manela and N.G. Hadjiconstantinou, “On the motion icelllin a small-scale gap due to instantaneous boundarnggati
J. Fluid Mech 593, 453-462 (2007).

8. C.M. Hoand Y.C. Tai, “Micro-Electro-Mechanical Systearsd fluid flows", Annu. Rev. Fluid. Mecl80, 579-612 (1998).

9. D.Y. Tzou,Macro-to-Microscale Heat Transfer (Taylor and Francis, 1997).

10. A. Manela and N.G. Hadjiconstantinou, “Gas motion iretliby unsteady boundary heating in a small-scale slab",.Phys
Fluids.20, 117104 (2008).

11. S. Stefanov, V. Roussinov and C. Cercignani, “Rayléghard flow of a rarefied gas and its attractors. |. Convecggime",
Phys. Fluidsl4, 2255-2269 (2002).

12. N.G. Hadjiconstantinou, “The limits of Navier-Stokégory and kinetic extensions for describing small-scakegas
hydrodynamics", Phys. Fluids3, 111301 (2006).

13. A. Manela and I. Frankel, “On the compressible Taylou€tte problem"”, J. Fluid. Mecl®88, 59-74 (2007).

14. T.M.M. Homolle and N.G. Hadjiconstantinou, ‘A Low-varice Deviational Simulation Monte Carlo for the Boltzmann
Equation”, J. Comp. Phy&26, 2341-258 (2007).

15. G.A. Radtke and N.G. Hadjiconstantinou, “Variancedistl particle simulation of the Boltzmann transport equmatn the
relaxation-time approximation", Phys. Rev7& 056711 (2009).

16. P.L.Bhatnagar, E.P. Gross and M. Krook, “A model foris@hal processes in gases |: small amplitude processémged
and in neutral one-component systems"”, Phys. B&\611-525 (1954).

17. Y. SoneMolecular Gas Dynamics. Theory, Techniques, and Applications (Birkhauser, 2007).

18. A. Manela and N.G. Hadjiconstantinou, “Gas-flow animatby unsteady heating in a microchannel", Phys. Fluigs.
062001 (2010).

19. G. Bird,Molecular Gas Dynamics and the Direct Smulations of Gas Flows (Clarendon Press, Oxford, 1994).

wnh e

o oA



