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Abstract.
We study the flow-field generated in a one-dimensional wall-bounded gas layer due to periodic small-amplitude time

variation in the temperature of its boundaries. We focus on the Navier-Stokes limit, where the layer width is large compared
to the mean free path and the characteristic time-scale of temperature variations is long compared with the mean free
time between collisions. The viscous-compressible Navier-Stokes equations with slip-flow boundary conditions are solved
analytically for the case of sinusoidal heating. The analysis is then extended to study the system response to arbitrary
periodic heating. Results are presented for both triangle-and square-wave heating profiles. These solutions are foundto
be in good agreement with low-variance Monte-Carlo simulations of the Boltzmann equation, validating the present analysis
as an accurate and simple alternative to expensive molecular computations. In addition, the analysis is applied for quantitative
examination of the conditions for breakdown of the slip-flowdescription in non-isothermal flows.
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INTRODUCTION

The time response of a fluid confined in a channel and subject toa change in the thermal properties of its boundaries has
been studied extensively in the context of both classical fluid mechanics [1] and rarefied gas dynamics [2]. The fluid
motion induced in this problem is essentially driven by the mechanism of thermal expansion, coupling temperature
variations in the fluid with density gradients. The problem of gradual change in wall thermal properties was studied in
the context of continuum gas dynamics in a series of papers (see [3] and papers cited therein) in which a time-scale
longer than some modest multiple of the molecular collisiontime has been assumed. To consider shorter time-scales,
several researchers have investigated the problem in the limit of sudden temperature variations by examining the
kinetic response of a dilute gas to a step function change in wall temperatures [4-7].

Current interest in the unsteady boundary heating problem is motivated by the common occurrence of time-varying
boundary temperatures in a wide scope of micro- and nano-electro-mechanical-system applications, ranging from
micro-processor chip heating to ultrafast thermal excitation encountered in the laser industry [8, 9]. Previous works
have focused on the gas response to instantaneous [7] and rapidly-varying continuous [10] changes in the wall
temperatures with characteristic time-scales on the orderof, or smaller than, the mean collision time. Under these
conditions, the effect of molecular collisions is small, and a collisionless description is appropriate. Utilizing such a
description, closed-form solutions were obtained for the step-jump and high-frequency oscillatory heating problems.
In the latter case, the hydrodynamic response was found to beconfined to thin bounded layers in the vicinity of the
walls at all times.

In this work we complement the above studies by focusing on the problem in the collision-dominated limit; namely,
we consider the case where the distance between the walls is large compared with the mean free path and the time-
scale of temperature variations is large compared with the mean time between molecular collisions. We study the
late-time response of the system to periodic changes in the temperature of its boundaries. The gas behavior in these
cases is modeled by the compressible Navier-Stokes equations subject to slip-flow boundary conditions. To first-order
in the Knudsen number, the latter reduce to impermeability conditions for the normal component of the flow velocity
and temperature jump conditions at the boundaries. This is acommonly-used model which has been applied to the
study of various problems [11-13]. The inclusion of slip-flow boundary conditions makes the results presented here
applicable to devices with characteristic scales as small as≈ 1µm at standard atmospheric conditions. We make use



of the present analysis to examine the breakdown of the slip-flow description with decreasing time- and length-scales
through comparison with low-variance Monte Carlo simulations of the Boltzmann equation [14, 15] and existing
analyses of the counterpart high-frequency collisionlessproblem [10].

The paper is organized as follows: first, the linearized problem is formulated. Then an analytical solution is derived
and the numerical method used for validation is outlined. Our results for sinusoidal and general periodic heating
profiles are presented and discussed. Finally, some concluding remarks are given.

PROBLEM FORMULATION

Consider a perfect monatomic gas layer of mean densityρ0 confined between two infinitely long, accommodating
walls in the(y∗,z∗) plane atx∗ = ±L/2, where∗ denotes a dimensional variable. The walls are heated uniformly
with prescribed periodic time dependence and their common temperature isT ∗

w (t∗) = T0[1+ εF(t∗)]. HereF(t∗) =
F(t∗ + τ∗p), whereτ∗p = 2π/ω∗

p is the time period andω∗
p is the angular frequency of the temperature variation. It is

assumed that the amplitudeε of the oscillatory term is small (ε ≪ 1) so that the system description may be linearized
about its equilibrium state of uniform densityρ0 and temperatureT0. In contrast with previous studies [7, 10], we focus
here on the case where the distanceL between the walls is large compared with the molecular mean free pathl (i.e.,
the Knudsen numberKn = l/L ≪ 1) and the characteristic time-scale of the temperature variations at the boundaries
is large compared with the mean time between collisions.

We model the system evolution using the viscous-compressible Navier-Stokes equations subject to slip-flow bound-
ary conditions at the boundaries [12]. We assume a one-dimensional setup where all variables arex∗-dependent and the
velocity vectoru∗ has a non-zero component only in thex∗-direction. To render the problem dimensionless, we scale
the position by the layer widthL and the time by a time-scaleτ∗ = ω∗

p
−1. The velocity is scaled byω∗

pL and the density
and temperature are normalized byρ0 andT0, respectively. Linearizing about the initial equilibriumstate, we obtain
the following balances of mass, momentum and energy for theO(ε) densityρ , normal velocityu and temperatureT
perturbations
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together with the boundary conditions

u = 0 andT = F(t)± ξ
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at x = ∓1/2 . (2)

In Eq. (1), St = ω∗
pL/

√
RT0 is the Strouhal number (with gas constantR); K̃n = µ0/(ρ0

√
RT0L) is the modified

(viscosity-based) Knudsen number (withµ0 the gas dynamic viscosity at reference-equilibrium conditions);γ is the
ratio of specific heats; andPr is the Prandtl number. For a perfect monatomic gasγ = 5/3. We consider here a BGK
(Bhatnagar, Gross and Krook [16]) model of molecular interaction for whichPr = 1 and efficient low-variance Monte
Carlo solution methods exist [15]. In the present notation,our assumption that the characteristic timeω∗

p
−1 is much

longer than the mean time between collisionsτ∗coll = l/
√

8RT0/π, can be expressed asStKn ≪
√

8/π ≈ 1.6. We
comment further on the validity of this condition in the Analysis and Results sections.

The boundary conditions (2) impose impermeability and specify the magnitude of temperature jump at the walls.
The latter is determined by the value of the temperature gradient at the walls and a temperature-jump coefficient,
ξ = ζKn, with ζ taking the valueζ = 1.3

√
π/2 for the BGK model [17]. The modified Knudsen numberK̃n appearing

in (1) is related toKn through

K̃n =
µ0

ρ0
√

RT0l
Kn , (3)

whereµ0/(ρ0
√

RT0l) =
√

π/8 for a BGK gas [17].



ANALYSIS

Sinusoidal heating

The problem specified by Eqs. (1)-(2) is amenable to analytical solution for the case of sinusoidal heating,F(t) =
sin(t). Towards this end, we seek for the long-time periodic (rather than the initial transient) behaviour of the system.
We assume harmonic time-dependence of the hydrodynamic perturbations

G(x,t) = Ḡ(x)eit , G ∈ {ρ ,u,T} (4)

and substitute (4) into (1). The density and velocity perturbations can be eliminated using
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to yield a single equation for the temperature
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The solution of (6) satisfying the boundary conditions (2) is given by

T̄ (x) = Acosh(r1x)+ Bcosh(r2x) , (7)

where the constantsA,B,r1 andr2 are tabulated in Ref. [18]. The expressions for the density and velocity perturbations
follow subsequently from (5). In addition, the normal heat-flux is given by Fourier’s law, which in non-dimensional
representation (after scaling byρ0(RT0)

3/2) takes the form ¯q(x) = −(5K̃n/2Pr)T̄ ′. The physical fields are obtained by
taking the imaginary parts of the pertinent expressions.

General periodic heating

The above solution can be extended to obtain the gas responseto arbitrary small-amplitude periodic heating. This
can be achieved by representing the system behavior as a linear superposition of single-harmonic responses, with
varying amplitudes determined from the Fourier expansion of F(t).

We demonstrate this procedure by studying the gas response to the “triangle wave" (tw) and “square-wave" (sw)
heating signals. These profiles can be represented by their Fourier series expansions

Ftw(t +2πk) =

{ 2t/π , 0≤ t < π/2
−2t/π +2 , π/2≤ t < 3π/2
2t/π −4 , 3π/2≤ t < 2π

=
8
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and

Fsw(t +2πk) =

{
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4
π

∞
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n

sin(nt) , (9)

wherek = 0,±1,±2, . . .. Using linear superposition, the system response is now obtained as an infinite sum over the
corresponding responses to each of the sum components in (8)and (9). The solution for each component depends on
the Strouhal number based on the corresponding frequency component,St(n) = nω∗

pL/
√

RT0. Sincen can become

arbitrarily large, it is inevitable that the slip-flow regime requirement,St(n)Kn ≪
√

π/8, will not be satisfied for
sufficiently largen. In practice, however, only a finite number of terms is neededfor a converged result, owing to
the decaying contribution of the high-frequency terms (∼ 1/n2 in the triangle-wave and∼ 1/n in the square-wave
distributions). More specifically, our numerical calculations indicate that onlyN ≈ 10 andN ≈ 100 terms are required
for obtaining a converged result in the triangle- and square-wave cases, respectively. These considerations lead to
a bound on the dimensional frequencyω∗

p which, for a givenKn, satisfies the conditionSt(N)Kn ≪
√

π/8. This
limitation becomes particularly important, as shown in Fig. 3, at short times after wall-temperature discontinuities,
where high-frequency components are non-negligible.
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FIGURE 1. (a) Schematic partition of the(Kn,St) plane to the different flow domains in the sinusoidal heatingproblem. The dark-
shaded and bright-shaded zones mark the domains of slip-flowand collisionless-flow regimes, respectively. The lineStKn =

√
8/π

corresponds to the locus of states where the characteristictime-scaleτ = 1/ωp is equal to the mean collision timeτcoll . The limit
casesSt ≪ Kn ≪ 1 (of small dynamical compressibility) andStKn ≫

√
8/π ,St ≫ 1 (of thin bounded layers) are discussed in Refs.

[18] and [10]. The crosses, circles and triangles mark the(St,Kn) combinations for which LVDSMC data is presented in Fig. 1b.
(b) The Knudsen-number variation of the walls heat-flux amplitude,|qw|= max{q(x =±0.5)}, at the indicated values ofSt/(π

√
2)

for a BGK gas subject to sinusoidal heating. The lines mark the analytical slip-flow and collisionless solutions and the symbols
denote LVDSMC data.

NUMERICAL SIMULATIONS

Slip-flow theory can be rigorously derived from asymptotic analysis of the Boltzmann equation. In this section we
briefly describe the method used for obtaining numerical solutions of the Boltzmann equation for validating the
present analysis. Since Boltzmann equation solutions are valid for all Kn andSt, they will allow us to find the limits
of applicability of our results.

The prevalent numerical scheme for solving the Boltzmann equation is a stochastic particle method known as the
direct simulation Monte Carlo (DSMC) method [19]. However,since typical flow-velocities in the present problem
are small compared to the speed of sound, use of the DSMC method with existing computational resources becomes
extremely time consuming. Our numerical solutions are therefore obtained using a recently developed variance-
reduced particle method akin to DSMC known as low-variance deviational simulation Monte Carlo (LVDSMC),
which, by simulating only thedeviation from equilibrium, achieves significant variance reduction, enabling accurate
simulation of weak-signal flows with reasonable computational resources.

In the following, the BGK model is simulated using a particular LVDSMC method developed by Radtke and
Hadjiconstantinou [15] for treating the linearized Boltzmann equation in the relaxation-time approximation. In contrast
with the DSMC method, the low Knudsen numbers considered here do not pose particular problems for the LVDSMC
method, as the latter simulates the deviation from a spatially variable equilibrium and is able to take advantage of
the near-local-equilibrium conditions prevalent at lowKn. The simulations useNcell = 200 cells forKn = 0.025 and
Ncell = 100 cells for all other values ofKn. The time-step used was a small fraction (typically 0.2) of the cell traversal
time based on the most probable speedL/(Ncell

√
2RT0). The results shown were sampled after allowing the simulation

to achieve a “steady" oscillatory state by integrating in time for at least 20 acoustic time-scalesL/
√

2RT0.

RESULTS

The slip-flow analysis of the system response to sinusoidal heating has been validated in Ref. [18] through comparison
with LVDSMC results. For completeness, we describe here thelimits of applicability of our theory. Figure 1 presents
schematic mapping of the different flow regimes obtained in the sinusoidal heating problem in the(Kn,St) plane. In
Fig. 1a, The dark-shaded and bright-shaded zones mark the domains of slip-flow and free-molecular regimes, respec-
tively, while the unshaded zone corresponds to the transition regime domain of “intermediate" Knudsen numbers. Fig.
1b presents theKn-variation of the walls heat-flux amplitude at the indicatedvalues ofSt.

WhenSt < 1, the characteristic time-scale of temperature variations at the boundaries is always considerably larger
than the mean collision time. As a result, the limit of validity of the slip-flow theory is determined only by the Knudsen
number. Our comparison with LVDSMC simulations (cf. Fig. 1band [18]) confirms the commonly accepted value of
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FIGURE 2. The (a) velocity and (b) temperature perturbations for a BGKgas subject to triangle-wave heating profile at
Kn = 0.025,St = π

√
2/4≈ 1.11 and the indicated values of time. The solid lines correspond to the Fourier-series results and the

crosses mark LVDSMC data. The circles denote the wall-temperature perturbations, added to mark the magnitude of temperature-
jumps at the walls.
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FIGURE 3. The velocity perturbation for a BGK gas subject to square-wave heating profile atKn = 0.025,St = π
√

2/4≈ 1.11
and the indicated values of time. The solid lines correspondto the Fourier-series results and the crosses mark LVDSMC data.

Kn ≈ 0.1 to be the upper limit of applicability of the slip-flow model. The transition regime then extends up toKn ≈ 7,
where the effect of molecular collisions vanishes and the free-molecular description, analyzed in Ref. [10], prevails.

The situation changes markedly in the case of high-frequency heating,St ≫ 1. Here, the short time-scale of tem-
perature variations at the walls becomes the main factor in determining the type of flow to be developed; specifically,
theStKn criterion replaces the Knudsen number condition used in theSt < 1 case. AtStKn =

√
8/π (denoted by a

line in Fig. 1a) the characteristic time-scaleτ = 1/ωp and the mean collision timeτcoll are equal; the slip-flow and
collisionless flow regimes are expected to take place atStKn ≪

√
8/π andStKn ≫

√
8/π, respectively. In practice,

our comparison with LVDSMC data indicate that the transition regime is bounded between 0.2 < StKn < 20.
The analysis of the system response to the triangle-wave (8)and square-wave (9) signals is examined in Figures

2 and 3, respectively, where the velocity and temperature fields are compared with LVDSMC results. The indicated
Strouhal number in both cases (St = π

√
2/4) corresponds to the “fundamental"n = 1 frequency of the wave. In the

triangle-wave case (Fig. 2), the agreement between the present theory and LVDSMC data is very good at all times,
apart from thin Knudsen layers observed in the temperature profile att = 2π .

A less satisfactory agreement is obtained in the square-wave case (Fig. 3), where large discrepancies appear in the
velocity profile shortly after the wall-temperature discontinuity occurs (att = π the wall-temperature perturbation
“jumps" from 1 to−1). To rationalize these discrepancies, recall that the Strouhal number is inversely proportional to
the characteristic time-scale of the temperature variations at the walls. When wall-temperature discontinuities occur,
this local time-scale becomes vanishingly small, making the corresponding Strouhal number infinitely large. In terms
of the present Fourier analysis, infinitely large frequencycomponents are required to capture the correct system
behaviour. The conditionStKn ≪

√
π/8 is therefore violated and the full kinetic model of the gas must be taken

into account. As can be seen in Fig. 3a, this breakdown of the slip-flow description persists for some (short) time after
the discontinuity occurs. This indicates that even when approximating the system behavior using a truncated Fourier



series, a number of high-frequency terms (which are still non-negligible) violate the time-scale restriction. Specifically,
for the present case characterized bySt ≈ 1.11 andKn = 0.025, we find thatSt(N = 100)Kn ≈ 5.6>

√
π/8, which is

manifested in the disagreement between the two velocity profiles att = 11π/10 (Fig. 3a). With increasing time (from
the discontinuity att = π to the one att = 2π), the discrepancies in the velocity vanish (Fig. 3b). Similar trends are
also observed in all other hydrodynamic fields (not shown here).

CONCLUSION

We have studied the linearized response of a gas confined in a micro-channel to periodic variation in the temperature
of its boundaries. The results obtained, valid for Knudsen numbersKn < 0.1 and Strouhal numbersSt < Kn−1,
complement existing analyses of the collisionless gas response to high-frequency (St ≫ 1) heating. In addition, the
present scheme provides an accurate and simple descriptionof the gas response in the low-St number limit where
numerical calculations are particularly demanding, due tolong evolution time-scales and small hydrodynamic response
amplitudes. Extensions of the present results to non-periodic heating profiles as well as other models of molecular
interaction are presented in a separate paper [18].
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